Advertisements
Advertisements
Question
A job production unit has four jobs P, Q, R, S which can be manufactured on each of the four machines I, II, III and IV. The processing cost of each job for each machine is given in the following table :
Job | Machines (Processing cost in ₹) |
|||
I | II | III | IV | |
P | 31 | 25 | 33 | 29 |
Q | 25 | 24 | 23 | 21 |
R | 19 | 21 | 23 | 24 |
S | 38 | 36 | 34 | 40 |
Complete the following activity to find the optimal assignment to minimize the total processing cost.
Solution:
Step 1: Subtract the smallest element in each row from every element of it. New assignment matrix is obtained as follows :
Job | Machines (Processing cost in ₹) |
|||
I | II | III | IV | |
P | 6 | 0 | 8 | 4 |
Q | 4 | 3 | 2 | 0 |
R | 0 | 2 | 4 | 5 |
S | 4 | 2 | 0 | 6 |
Step 2: Subtract the smallest element in each column from every element of it. New assignment matrix is obtained as above, because each column in it contains one zero.
Step 3: Draw minimum number of vertical and horizontal lines to cover all zeros:
Job | Machines (Processing cost in ₹) |
|||
I | II | III | IV | |
P | 6 | 0 | 8 | 4 |
Q | 4 | 3 | 2 | 0 |
R | 0 | 2 | 4 | 5 |
S | 4 | 2 | 0 | 6 |
Step 4: From step 3, as the minimum number of straight lines required to cover all zeros in the assignment matrix equals the number of rows/columns. Optimal solution has reached.
Examine the rows one by one starting with the first row with exactly one zero is found. Mark the zero by enclosing it in (`square`), indicating assignment of the job. Cross all the zeros in the same column. This step is shown in the following table :
Job | Machines (Processing cost in ₹) |
|||
I | II | III | IV | |
P | 6 | 0 | 8 | 4 |
Q | 4 | 3 | 2 | 0 |
R | 0 | 2 | 4 | 5 |
S | 4 | 2 | 0 | 6 |
Step 5: It is observed that all the zeros are assigned and each row and each column contains exactly one assignment. Hence, the optimal (minimum) assignment schedule is :
Job | Machine | Min.cost |
P | II | `square` |
Q | `square` | 21 |
R | I | `square` |
S | III | 34 |
Hence, total (minimum) processing cost = 25 + 21 + 19 + 34 = ₹`square`
Solution
Step 1: Subtract the smallest element in each row from every element of it. New assignment matrix is obtained as follows :
Job | Machines (Processing cost in ₹) |
|||
I | II | III | IV | |
P | 6 | 0 | 8 | 4 |
Q | 4 | 3 | 2 | 0 |
R | 0 | 2 | 4 | 5 |
S | 4 | 2 | 0 | 6 |
Step 2: Subtract the smallest element in each column from every element of it. New assignment matrix is obtained as above, because each column in it contains one zero.
Step 3: Draw minimum number of vertical and horizontal lines to cover all zeros:
Job | Machines (Processing cost in ₹) |
|||
I | II | III | IV | |
P | 6 | 0 | 8 | 4 |
Q | 4 | 3 | 2 | 0 |
R | 0 | 2 | 4 | 5 |
S | 4 | 2 | 0 | 6 |
Step 4: From step 3, as the minimum number of straight lines required to cover all zeros in the assignment matrix equals the number of rows/columns. Optimal solution has reached.
Examine the rows one by one starting with the first row with exactly one zero is found. Mark the zero by enclosing it in (`square`), indicating assignment of the job. Cross all the zeros in the same column. This step is shown in the following table :
Job | Machines (Processing cost in ₹) |
|||
I | II | III | IV | |
P | 6 | 0 | 8 | 4 |
Q | 4 | 3 | 2 | 0 |
R | 0 | 2 | 4 | 5 |
S | 4 | 2 | 0 | 6 |
Step 5: It is observed that all the zeros are assigned and each row and each column contains exactly one assignment. Hence, the optimal (minimum) assignment schedule is :
Job | Machine | Min.cost |
P | II | 25 |
Q | IV | 21 |
R | I | 19 |
S | III | 34 |
Hence, total (minimum) processing cost = 25 + 21 + 19 + 34 = ₹ 99