Advertisements
Advertisements
Question
A particle executes SHM with an amplitude of 10 cm and frequency 2 Hz. At t = 0, the particle is at a point, where potential energy and kinetic energy are same. The equation of displacement of particle is ______.
Options
0.1 sin `(4pi"t"+pi/4)`
0.1 sin 4πt
0.1 cos `(4pi"t"+pi/4)`
None of these
Solution
A particle executes SHM with an amplitude of 10 cm and frequency 2 Hz. At t = 0, the particle is at a point, where potential energy and kinetic energy are same. The equation of displacement of particle is `bbunderline(0.1 sin (4pi"t"+pi/4))`.
Explanation:
Let x = A sin (ωt + Φ)
∴ v = `("d"x)/"dt"` = Aω cos (ωt + Φ)
∴ KE = `1/2"mv"^2=1/2"m""A"^2omegacos^2(omegat +phi)`
∴ (KE)max = `1/2"mA"^2omega^2`
∴ PE = `1/2"mA"^2omega^2-"KE"`
= `1/2"mA"^2omega^2-1/2"mA"^2omega^2cos^2(omegat+phi)`
= `1/2"mA"^2omega^2sin^2(omega"t"+phi)`
According to problem, KE = PE (at t = 0)
∴ `1/2"mA"^2omega^2sin^2(omega"t"+phi)`
= `1/2"mA"^2omegacos^2(omega"t"+phi)`
∴ tan2 (ωt + Φ) = 1
⇒ tan2 (ωt + Φ) = tan2 .`pi/4`
⇒ ωt + Φ = `pi/4`
⇒ Φ = `pi/4` (∵ t = 0)
∵ x = A sin (ωt + Φ)
Here, A = 10 cm = 0.1 m
ω = 2πf = 2π × 2 = 4π rad/s
Φ = `pi/4`
∴ x = 0.1 sin `(4pi"t"+pi/4)`