English

A particle is projected with speed v0 at angle θ to the horizontal on an inclined surface making an angle Φ (Φ < θ) to the horizontal. Find the range of the projectile along the inclined surface. - Physics

Advertisements
Advertisements

Question

Solve the following problem.

A particle is projected with speed v0 at angle θ to the horizontal on an inclined surface making an angle Φ (Φ < θ) to the horizontal. Find the range of the projectile along the inclined surface.

Numerical

Solution

  1. The equation of trajectory of projectile is given by,
    y = `(tan theta)"x" - ["g"/(2"u"^2cos^2theta)]"x"^2`   ...(1)
  2. In this case to find R substitute,
    y = R sin Φ               ….(2)
    x = R cos Φ              ….(3)
  3. From equations (1), (2) and (3), we have,
    R sin Φ = tan θ (R cos Φ) - `("g"/(2"v"_0^2 cos^2theta)) "R"^2cos^2phi`    ....(∵ u = v0)
  4. So, sin Φ = tan θ cos Φ - `("g R" cos^2 phi)/(2 "v"_0^2 cos^2 theta)`
    ∴ `("g R" cos^2 phi)/(2 "v"_0^2 cos^2 theta) = tan theta cos phi - sin phi`
  5. Hence,
    R = `(2"v"_0^2)/"g" [(cos^2theta)/(cos^2phi)] [tan theta cos phi - sin phi]`
    `= (2"v"_0^2)/"g" (cos theta)/(cos^2phi) [cos theta (sin theta)/(cos theta) cos phi - cos theta sin phi]`
  6. So, R = `(2"v"_0^2)/"g" = (cos theta)/(cos^2phi) [sin theta cos phi - cos theta sin phi]`
    ∴ R = `(2"v"_0^2)/"g" = (cos theta)/(cos^2phi) sin (theta - phi)     .....[because sin(theta - phi) = sin theta cos phi - cos theta sin phi]`
shaalaa.com
Motion in Two Dimensions-Motion in a Plane
  Is there an error in this question or solution?
Chapter 3: Motion in a Plane - Exercises [Page 45]

APPEARS IN

Balbharati Physics [English] 11 Standard Maharashtra State Board
Chapter 3 Motion in a Plane
Exercises | Q 3. (vi) | Page 45
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×