Advertisements
Advertisements
Question
A pendulum has a frequency of 4 vibrations per second. An oberver starts the pendulum and fires a gun simultaneously. He hears the echo from the cliff after 6 vibrations of the pendulum, if the velocity of sound in air is 340 m/s, find the distance betwen the cliff and the obsever.
Solution
v =4HZ vs = 340 m/s
`T =1/4` sec
`t = 6 xx1/4 = 1.5 `sec
As echo is listened ;
`2d = v_s xx t`
`d =(v_s xx t)/2 = (340 xx 1.5 )/2 = 255`m
APPEARS IN
RELATED QUESTIONS
What should be the minimum distance between source and reflector in water so that echo is heard distinctly?
(The speed of sound in water = 1400 m s-1)
A RADAR sends a signal with a speed of 3 x 108 m s-1 to an aeroplane at a distance of 300 km from it. After how much time is the signal received back after reflection from the aeroplane?
A man fires a gun and hears its echo after 5 s. The man then moves 310 m towards the hill and fires his gun again. This time he hears the echo after 3 s. calculate the speed of sound.
A person standing at a distance x in front of a cliff fires a gun. Another person B standing behind the person A at a distance y from the cliff hears two sounds of the fired shots after 2s and 3s respectively. Calculate x and y (take speed of sound 320 m/s-1).
A boy standing in front of a wall at a distance 17 m produces 10 claps per second. He notices that the sound of his clapping coincides with the echo. Echo is heard only once when clapping is stopped. Calculate the speed of sound.
A ship which is stationary at a distance of 680 m from the shore, sends a signal to the coast. Its echo is heard in 4s. Find the velocity of sound.
The wavelength and frequency of the sound wave in a certain medium is 40 cm and 835 Hz respectively. In the same medium if another wave has a wavelength equal to 32 cm, calculate its frequency.
An observer stands at a certain distance away from a cliff and produces a loud sound. He hears the echo of the sound after 1.8 s. Calculate the distance between the cliff and the observer if the velocity of sound in air is 340 m−1.
An instrument is able to detect the reflected waves from an enemy aeroplane, after a time interval of 0.02 milliseconds. If the velocity of the waves is 3 × 108 ms−1, calculate the distance of the plane from the radar.
A man stands in between two parallel cliffs and blows a whistle. He hears first echo after 0.6s and second echo after 2.4s. Calculate the distance between cliffs.
[Speed of sound = 336 m/s]