English

A polynomial q(t) with sum of zeroes as 1 and the product as -6 is modelling Anu’s height in feet above the water at any time t( in seconds). Then q(t) is given by ______. -

Advertisements
Advertisements

Question

Case Study -1

The figure given alongside shows the path of a diver, when she takes a jump from the diving board. Clearly it is a parabola.

Annie was standing on a diving board, 48 feet above the water level. She took a dive into the pool. Her height (in feet) above the water level at any time ‘t’ in seconds is given by the polynomial h(t) such that h(t) = -16t2 + 8t + k.

A polynomial q(t) with sum of zeroes as 1 and the product as -6 is modelling Anu’s height in feet above the water at any time t( in seconds). Then q(t) is given by ______.

Options

  • t2 + t + 6

  • t2 + t - 6

  • -8t2 + 8t + 48

  • 8t2 - 8t + 48

MCQ
Fill in the Blanks

Solution

A polynomial q(t) with sum of zeroes as 1 and the product as -6 is modelling Anu’s height in feet above the water at any time t( in seconds). Then q(t) is given by -8t2 + 8t + 48.

Explanation:-

A polynomial q(t) with sum of zeroes as 1 and the product as -6 is given by

q(t) = k(t2 - (sum of zeroes)t + product of zeroes)

= k(t2 - 1t + (-6))      ...(1)

When t = 0 (initially) q(0)= 48ft

q(0)=k(02 - 1(0) - 6) = 48

i.e. -6k = 48 or k= -8

Putting k = -8 in equation (1), reqd. polynomial is -8(t2 - 1t + (-6))

= -8t² + 8t + 48

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×