Advertisements
Advertisements
Question
A real value of x satisfies `((3 - 4ix)/(3 + 4ix))` = α – iβ (α, β ∈ R), if α2 + β2 is equal to
Options
1
– 1
2
– 2
MCQ
Solution
1
Explanation:
Since, `((3 - 4ix)/(3 + 4ix))` = α – iβ (α, β ∈ R)
⇒ `(alpha - ibeta) = ((3 - 4ix)(3 - 4ix))/((3 + 4ix)(3 - 4ix)) = (9 + 16i^2 x^2 - 24ix)/(9 - 16i^2 x^2)`
⇒ `alpha - ibeta = (9 - 16x^2 - 24ix)/(9 + 16x^2)` .....`[because i^2 = 1]`
⇒ `alpha - ibeta = (9 - 16x^2)/(9 + 16x^2) - (i(24x))/(9 + 16x^2)`
`a^2 + beta^2 = ((9 - 16x^2)/(9 + 16x^2))^2 + ((24x)/(9 + 16x^2))^2`
= `(81 + 256x^4 - 288x^2 + 576x^2)/(9 + 16x^2)^2`
= `(81 + 256x^4 + 288x^2)/(9 + 16x^2)^2`
= `(9 + 16x^2)^2/(9 + 16x^2)^2`
= 1
shaalaa.com
Is there an error in this question or solution?