Advertisements
Advertisements
Question
A solenoid has a core of material with relative permeability 500 and its windings carry a current of 1 A. The number of turns of the solenoid is 500 per meter. Calculate the magnetization of the material.
Solution
Given: μr = 500, I = 1 A, n = 500
To find: Magnetization (M)
Formula: M = (μr - 1)nI
Calculation:
From formula,
M = (500 - 1) × 500 × 1
= 2.495 × 105 Am-1
The magnetization of the material is 2.495 × 105 Am-1.
RELATED QUESTIONS
Define Magnetization.
The magnetic moment of a magnet of dimensions 5 cm × 2.5 cm × 1.25 cm is 3 Am2. Calculate the intensity of magnetization.
State formula and S.I. unit of Magnetization.
Find the magnetization of a bar magnet of length 10 cm and cross-sectional area 4 cm2, if the magnetic moment is 2 Am2.
Give two points to distinguish between a paramagnetic and a diamagnetic substance ?
The magnetic intensity H at the centre of a long solenoid carrying a current of 2.0 A, is found to be 1500 A m−1. Find the number of turns per centimetre of the solenoid.
The magnetic field inside a long solenoid of 50 turns cm−1 is increased from 2.5 × 10−3 T to 2.5 T when an iron core of cross-sectional area 4 cm2 is inserted into it. Find (a) the current in the solenoid (b) the magnetisation I of the core and (c) the pole strength developed in the core.
The magnetic field B and the magnetic intensity H in a material are found to be 1.6 T and 1000 A m−1, respectively. Calculate the relative permeability µr and the susceptibility χ of the material.
Assume that each iron atom has a permanent magnetic moment equal to 2 Bohr magnetons (1 Bohr magneton equals 9.27 × 10−24 A m2). The density of atoms in iron is 8.52 × 1028 atoms m−3. (a) Find the maximum magnetisation I in a long cylinder of iron (b) Find the maximum magnetic field B on the axis inside the cylinder.
At a certain temperature, a ferromagnetic material becomes paramagnetic. What is this temperature called?
When a plate of magnetic material of size 10 cm × 0.5 cm × 0.2 cm (length, breath, and thickness respectively) is located in a magnetizing field of 0.5 × 104 A/m-1, then a magnetic moment of 0.5 Am2 is induced in it. Find the magnetic induction in the plate.
A magnet of magnetic moment 3Am2 weighs 75 g. The density of the material of the magnet is 7500 kg/m3. what is magnetization?
An electron moves in a circular orbit with uniform speed v. It produces a magnetic field B at the centre of the circle. The radius of the circle is [µ0 = permeability of free space, e = electronic charge]
The magnetization of bar magnet of length 5 cm, cross-sectional area 2 cm2 and net magnetic moment 1 Am2 is ______.
A solenoid has core of a material with relative permeability 500 and its windings carry a current of 2 A. The number of turns of the solenoid is 500 per metre. The magnetization of the material is ______.
An iron rod of cross-sectional area 6 sq. cm is placed with its length parallel to a magnetic field of intensity 1200 Alm. The flux through the rod is 60 x 10-4 Wb. The permeability of the rod is ______.
A bar magnet has coercivity 6 x 103 Am-1. It is desired to demagnetise it by inserting it inside a solenoid 10 cm long and having 40 turns. The current that should be sent through the solenoid is ____________.
The permeability of a metal is 0.01256 TmA- 1 What is its relative permeability?
Two parallel wires of equal lengths are separated by a distance of 3m from each other. The currents flowing through first and second wire is 3A and 4.5A respectively in opposite directions. The resultant magnetic field at the mid-point of both wire is (µ0 = permeability of free space).
A cylindrical magnetic rod has length 5 cm and diameter 1 cm. It has uniform magnetization `5.3 xx 10^3 "A"/"m"^3`. Its net magnetic dipole moment is nearly `(pi = 22/7)`.
The dimensions of the relative magnetic permeability of the substance are ______.
If Mz = magnetization of a paramagnetic sample, B external magnetic field, T = absolute temperature, C = curie constant then according to Curie's law in magnetism, the correct relation is ______.
A bar magnet having length 5 cm and area of cross-section 4cm2 has magnetic moment 2Am2. If magnetic susceptibility is 5 x 10-6, the magnetic intensity will be ____________.
Find the intensity of magnetization of a magnet of moment 4 Am2 which weighs 50 gram. (Density of the material of a magnet = 5000 kg/m3)
Magnetization of a sample is ______.
A bar magnet has length 3 cm, cross-sectional area 4 cm2, and magnetic moment 6 Am2. The intensity of magnetisation of bar magnet is ______.
The magnetic moment produced in a substance of mass 5 gram is 6 x 10-7 Am2 If its density is 5 g/cm3, then intensity of magnetization in `"A"/"m"` will be ____________.
Magnetic intensity is given by ______.
If `vec"H"` = magnetic intensity, `chi` = susceptibility, magnetic moment per unit volume `vec"M"` equals ______.
Magnetic permeability is maximum for ______
What are the dimensions of χ, the magnetic susceptibility? Consider an H-atom. Guess an expression for χ, upto a constant by constructing a quantity of dimensions of χ, out of parameters of the atom: e, m, v, R and µ0. Here, m is the electronic mass, v is electronic velocity, R is Bohr radius. Estimate the number so obtained and compare with the value of |χ| ~ 10–5 for many solid materials.
What is magnetic susceptibility?
A bar magnet has length 3 cm, cross-sectional area 2 cm3 and magnetic moment 3 Am2. The intensity of magnetisation of bar magnet is ______.
The dimensions of magnetic intensity are ______.
The magnetization of a bar magnet of length 4 cm, cross-sectional area 1 cm2 and magnetic moment 2 SI units is ______.
The relation between relative permeability (`mu_r`) and magnetic susceptibility (`chi_m`) is:______.
State SI unit of Magnetization.