Advertisements
Advertisements
Question
All the-pairs (x, y) that satisfy the inequality `2^sqrt(sin^2x - 2sinx + 5), 1/(4^(sin^2y)) ≤ 1` also satisfy the equation ______.
Options
2|sin x| = 3sin y
2 sin x = sin y
sin x = 2 sin y
sin x = |sin y|
MCQ
Fill in the Blanks
Solution
All the-pairs (x, y) that satisfy the inequality `2^sqrt(sin^2x - 2sinx + 5), 1/(4^(sin^2y)) ≤ 1` also satisfy the equation sin x = |sin y|.
Explanation:
Given inequality is,
`2^sqrt(sin^2x - 2sinx + 5) ≤ 2^(2sin^2)y`
⇒ `sqrt(sin^2x - 2sinx + 5) ≤ 2sin^2y`
⇒ `sqrt((sinx - 1)^2 + 4) ≤ 2sin^2y`
It is true if sin x = 1 and |sin y| = 1
Therefore, sin x = |sin y|
shaalaa.com
Solution of Linear Inequality
Is there an error in this question or solution?