Advertisements
Advertisements
Question
An alternating e.m.f. of frequency 50 Hz is applied across series combination of resistor 'R' and inductance `(sqrt3/pi)`H. If the phase difference between applied e.m.f. and current 'I' is 60°, then the value of R is `[tan 60^circ = sqrt3, sin 60^circ = sqrt3/2, cos 60^circ = 1/2]`
Options
300 Ω
50 Ω
200 Ω
100 Ω
MCQ
Solution
100 Ω
Explanation:
L = `sqrt3/pi`H, f = 50 Hz, Φ = 60°
XL = 2πfL = 2π × 50 × `sqrt3/pi = 100sqrt3 omega`
Z = `sqrt("R"^2 + "X"_"L"^2)`
∴ cos 60° = `1/2 = "R"/sqrt("R"^2 + "X"_"L"^2)`
∴ `1/4 = "R"^2/("R"^2 + "X"_"L"^2)`
∴ `4"R"^2 = "R"^2 + "X"_"L"^2`
∴ `3"R"^2 = "X"_"L"^2`
∴ `"R"^2 = "X"_"L"^2/3`
∴ R = `"X"_"L"/sqrt3 = (100 sqrt3)/sqrt3 = 100 Omega`
shaalaa.com
Phasors
Is there an error in this question or solution?