Advertisements
Advertisements
Question
Answer the following :
Find the equations of the tangents to the circle x2 + y2 – 2x + 8y – 23 = 0 having slope 3
Solution
Let the equation of the tangent with slope 3 be y = 3x + c
i.e., 3x – y + c = 0 ...(1)
The centre of the circle x2 + y2 – 2x + 8y – 23 = 0 is
C (1, – 4) and its radius = `sqrt(1 + 16 + 23) = sqrt(40)`.
Since line (1) is tangent to the circle, the length of perpendicular from the centre C (1, - 4) to the line is equal to radius.
∴ `|(3(1) + (-1)(-4) + "c")/sqrt(3^2 + (-1)^2)| = sqrt(40)`
∴ `|(3 + 4 + "c")/sqrt(10)| = sqrt(40)`
∴ 7 + c = ± 20
∴ 7 + c = 20 or 7 + c = – 20
∴ c = 13 or c = – 27
∴ from (1), the equations of the tangents are
3x – y + 13 = 0 and 3x – y – 27 = 0.
APPEARS IN
RELATED QUESTIONS
Find the equation of a tangent to the circle x2 + y2 − 3x + 2y = 0 at the origin
Show that the line 7x − 3y − 1 = 0 touches the circle x2 + y2 + 5x − 7y + 4 = 0 at point (1, 2)
Choose the correct alternative:
The equation of the tangent to the circle x2 + y2 = 4 which are parallel to x + 2y + 3 = 0 are
Choose the correct alternative:
A pair of tangents are drawn to a unit circle with center at the origin and these tangents intersect at A enclosing an angle of 60°. The area enclosed by these tangents and the area of the circle is
Show that x = −1 is a tangent to circle x2 + y2 − 2y = 0 at (−1, 1).
Answer the following:
Find the equation of locus of the point of intersection of perpendicular tangents drawn to the circle x = 5 cos θ and y = 5 sin θ
Answer the following :
Find the value of k, if the length of the tangent segment from the point (8, –3) to the circle
x2 + y2 – 2x + ky – 23 = 0 is `sqrt(10)`
Answer the following :
Find the equation of tangent to Circle x2 + y2 = 5, at the point (1, –2) on it
Answer the following :
Find the equation of the tangent to Circle x = 5 cosθ. y = 5 sinθ, at the point θ = `pi/3` on it
Answer the following :
If the tangent at (3, –4) to the circle x2 + y2 = 25 touches the circle x2 + y2 + 8x – 4y + c = 0, find c
Answer the following :
Find the equations of the tangents to the circle x2 + y2 = 16 with slope –2
Answer the following :
Find the equations of the tangents to the circle x2 + y2 = 36 which are perpendicular to the line 5x + y = 2
Answer the following :
Find the equation of the locus of a point, the tangents from which to the circle x2 + y2 = 9 are at right angles.
Answer the following :
Tangents to the circle x2 + y2 = a2 with inclinations, θ1 and θ2 intersect in P. Find the locus of such that tan θ1 + tan θ2 = 0
Answer the following :
Tangents to the circle x2 + y2 = a2 with inclinations, θ1 and θ2 intersect in P. Find the locus of such that cot θ1 + cot θ2 = 5
The abscissae of the points, where the tangent to curve `y = x^3 - 3/2x^2 - 6x + 7/5` is parallel to X-axis, are ______
The equation of the tangent to the curve y = `2x + 1/x^2`, that is parallel to the X-axis, is ______.
The number of common tangents to the circles x2 + y2 - x = 0 and x2 + y2 + x = 0 is ______