Advertisements
Advertisements
Question
Area of the equilateral triangle inscribed in the circle x2 + y2 – 7x + 9y + 5 = 0 is ______.
Options
`155/8 sqrt(3)` square units
`168/8 sqrt(3)` square units
`175/8 sqrt(3)` square units
`165/8 sqrt(3)` square units
MCQ
Fill in the Blanks
Solution
Area of the equilateral triangle inscribed in the circle x2 + y2 – 7x + 9y + 5 = 0 is `underlinebb(165/8 sqrt(3) "square units")`.
Explanation:
Given circle : x2 + y2 – 7x + 9y + 5 = 0
∴ Centre = `(7/2, (-9)/2)`
Radius = `sqrt(49/4 + 81/4 - 5)`
= `sqrt(110)/2`
Since, ΔABC is an equilateral
∴ ∠MAL = 30°, ∠MLA = 90°
Also MA = `sqrt(110)/2`
∴ AL = MA cos 30° = `sqrt(110)/2 xx sqrt(3)/2 = sqrt(330)/4`
∴ Side of Δ = 2.AL = `sqrt(330)/2`
Area of equilateral Δ = `sqrt(3)/4 a^2 = sqrt(3)/4 xx 330/4`
= `165/8 sqrt(3)` sq.units
shaalaa.com
Conic Sections - Parabola
Is there an error in this question or solution?