Advertisements
Advertisements
Question
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.
Options
`(a/b)^x + 2x + c`
`(b/a)^x + 2x + c`
`(a/b)^x - 2x + c`
`1/(ln(a/b))[(a^(2x) - b^(2x))/(a^xb^x)] - 2x + c`
MCQ
Fill in the Blanks
Solution
`int (a^x - b^x)^2/(a^xb^x)dx` equals `underlinebb(1/(ln(a/b))[(a^(2x) - b^(2x))/(a^xb^x)] - 2x + c`.
Explanation:
`int (a^x - b^x)^2/(a^xb^x)dx`
= `int(a^x/b^x + b^x/a^x - 2)dx`
= `int[(a/b)^x + (b/a)^x - 2]dx`
= `(a/b)^x/(ln(a/b)) + (b/a)^x/(ln(b/a)) - 2x + c`
= `1/(ln(a/b))[(a/b)^2 - (b/a)^2] - 2x + c`
= `1/(ln(a/b))[(a^(2x) - b^(2x))/(a^xb^x)] - 2x + c`
shaalaa.com
Is there an error in this question or solution?