Advertisements
Advertisements
Question
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
Options
πa
2πa
`(π/4) "a"`
`(π/2) "a"`
MCQ
Fill in the Blanks
Solution
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = `underline((π/2) "a")`.
Explanation:
We have, I = `int_0^"a" sqrt("x"/("a" - "x")) "dx"`
Put, x = a sin2 θ = dx = 2a sin θ cos θ dθ
hen, x = 0, θ = 0 and x = a, θ = `π/2`
∴ I = `int_0^(π/2) sqrt(("a" sin^2 θ)/("a" (1 - sin^2 θ)))` 2a sin θ cos θ dθ
I = `2"a" int_0^(π/2) sin θ/cos θ` (sin θ cos θ) dθ
l = `"a" int_0^(π/2)` 2sin2 θ dθ
l = `"a" int_0^(π/2)` (1 − cos 2θ) dθ
l = `"a" [θ - (sin 2θ)/2]_0^(π/2)`
l = `"a" [π/2 - 0]`
l = `(π/2) "a"`
shaalaa.com
Is there an error in this question or solution?