Advertisements
Advertisements
Question
By the principle of mathematical induction, prove the following:
1 + 4 + 7 + ……. + (3n – 2) = `("n"(3"n" - 1))/2` for all n ∈ N.
Solution
Let P(n) : 1 + 4 + 7 + ……. + (3n – 2) = `("n"(3"n" - 1))/2`
Put n = 1,
LHS = 1
RHS = `(1(3 - 1))/2 = 1`
∴ P(1) is true.
Assume P(k) is true for n = k
P(k): 1 + 4 + 7 + ……. + (3k – 2) = `(k(3k - 1))/2`
To prove P(k + 1) is true, i.e., to prove
1 + 4 + 7 + ……. + (3k – 2) + (3(k + 1) – 2) = `((k + 1)(3(k + 1) - 1))/2`
1 + 4 + 7 + ……. + (3k – 2) + (3k + 3 – 2) = `((k + 1)(3k + 2))/2`
1 + 4 + 7 + …… + (3k + 1) = `((k + 1)(3k + 2))/2`
1 + 4 + 7 + …… + (3k – 2) + (3k + 1) = `(k(3k - 1))/2 + (3k + 1)`
`= (k(3k - 1) + 2(3k + 1))/2`
`= (3k^2 - k + 6k + 2)/2`
`= (3k^2 + 5k + 2)/2`
`= ((k + 1)(3k + 2))/2`
∴ P(k + 1) is true whenever P(k) is true.
∴ By the Principle of Mathematical Induction, P(n) is true for all n ∈ N.
APPEARS IN
RELATED QUESTIONS
By the principle of mathematical induction, prove the following:
32n – 1 is divisible by 8, for all n ∈ N.
By the principle of Mathematical induction, prove that, for n ≥ 1
1.2 + 2.3 + 3.4 + ... + n.(n + 1) = `("n"("n" + 1)("n" + 2))/3`
Using the Mathematical induction, show that for any natural number n ≥ 2,
`(1 - 1/2^2)(1 - 1/3^2)(1 - 1/4^2) ... (1 - 1/"n"^2) = ("n" + 1)/2`
Using the Mathematical induction, show that for any natural number n ≥ 2,
`1/(1 + 2) + 1/(1 + 2 + 3) + 1/(1 +2 + 3 + 4) + .... + 1/(1 + 2 + 3 + ... + "n") = ("n" - 1)/("n" + 1)`
By the principle of Mathematical induction, prove that, for n ≥ 1
`1^2 + 2^2 + 3^2 + ... + "n"^2 > "n"^2/3`
Use induction to prove that n3 − 7n + 3, is divisible by 3, for all natural numbers n
Use induction to prove that 5n+1 + 4 × 6n when divided by 20 leaves a remainder 9, for all natural numbers n
Use induction to prove that 10n + 3 × 4n+2 + 5, is divisible by 9, for all natural numbers n
Choose the correct alternative:
If `""^("a"^2 - "a")"C"_2 = ""^("a"^2 - "a")"C"_4` then the value of a is
Choose the correct alternative:
1 + 3 + 5 + 7 + · · · + 17 is equal to