Advertisements
Advertisements
Question
By the principle of mathematical induction, prove the following:
1.2 + 2.3 + 3.4 + … + n(n + 1) = `(n(n + 1)(n + 2))/3` for all n ∈ N.
Solution
Let P(n) denote the statement
1.2 + 2.3 + 3.4 + …… + n(n + 1) = `(n(n + 1)(n + 2))/3`
Put n = 1
LHS = 1(1 + 1) = 2
RHS = `(1(1 + 1)(1 + 2))/3 = (1(2)(3))/3` = 2
∴ P(1) is true.
Now assume that the statement be true for n = k
(i.e.,) assume P(k) be true
(i.e.,) assume 1.2 + 2.3 + 3.4 + …… + k(k + 1) = `(k(k + 1)(k + 2))/3` br true
To prove: P(k + 1) is true
(i.e.,) to prove: 1.2 + 2.3 + 3.4 + …… + k(k + 1) + (k + 1) (k + 2) = `((k + 1)(k + 2)(k + 3))/3`
Consider 1.2 + 2.3 + 3.4 + ……. + k(k + 1) + (k + 1) (k + 2)
= [1.2 + 23 + …… + k(k + 1)] + (k + 1) (k + 2)
= `(k(k + 1)(k + 2))/3` + (k + 1)(k + 2)
`= (k(k + 1)(k + 2) + 3(k + 1)(k + 2))/3`
`= ((k+1)(k+2)(k+3))/3`
∴ P(k + 1) is true.
Thus if P(k) is true, P(k + 1) is true.
By the principle of Mathematical ‘induction, P(n) is true for all n ∈ N.
1.2 + 2.3 + 3.4 + …… + n(n + 1) = `("n"("n + 1")("n + 2"))/3`
APPEARS IN
RELATED QUESTIONS
By the principle of mathematical induction, prove the following:
4 + 8 + 12 + ……. + 4n = 2n(n + 1), for all n ∈ N.
By the principle of mathematical induction, prove the following:
an – bn is divisible by a – b, for all n ∈ N.
By the principle of mathematical induction, prove the following:
52n – 1 is divisible by 24, for all n ∈ N.
The term containing x3 in the expansion of (x – 2y)7 is:
By the principle of mathematical induction, prove that, for n ≥ 1
13 + 23 + 33 + ... + n3 = `(("n"("n" + 1))/2)^2`
Using the Mathematical induction, show that for any natural number n ≥ 2,
`(1 - 1/2^2)(1 - 1/3^2)(1 - 1/4^2) ... (1 - 1/"n"^2) = ("n" + 1)/2`
Using the Mathematical induction, show that for any natural number n ≥ 2,
`1/(1 + 2) + 1/(1 + 2 + 3) + 1/(1 +2 + 3 + 4) + .... + 1/(1 + 2 + 3 + ... + "n") = ("n" - 1)/("n" + 1)`
Using the Mathematical induction, show that for any natural number n,
`1/(1*2*3) + 1/(2*3*4) + 1/(3*4*5) + ... + 1/("n"("n" + 1)*("n" + 2)) = ("n"("n" + 3))/(4("n" + 1)("n" + 2))`
Prove by Mathematical Induction that
1! + (2 × 2!) + (3 × 3!) + ... + (n × n!) = (n + 1)! − 1
Choose the correct alternative:
Everybody in a room shakes hands with everybody else. The total number of shake hands is 66. The number of persons in the room is ______