Advertisements
Advertisements
Question
Calculate Karl Pearsonian’s coefficient of skewness Skp from the following data:
Marks above | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
No. of students | 120 | 115 | 108 | 98 | 85 | 60 | 18 | 5 | 0 |
Solution
The given table is the cumulative frequency table of more than type. From this table, we have to prepare the frequency distribution table and then calculate the value of Skp.
Construct the following table:
Mark above | No. of students 'more than' (c.f.) |
Class-interval | Frequency fi |
Mid value xi |
fixi | fixi2 |
0 | 120 | 0 – 10 | 5 | 5 | 25 | 125 |
10 | 115 | 10 – 20 | 7 | 15 | 105 | 1575 |
20 | 108 | 20 – 30 | 10 | 25 | 250 | 6250 |
30 | 98 | 30 – 40 | 13 | 35 | 455 | 15925 |
40 | 85 | 40 – 50 | 25 | 45 | 1125 | 50625 |
50 | 60 | 50 – 60 | 42 | 55 | 2310 | 127050 |
60 | 18 | 60 – 70 | 13 | 65 | 845 | 54925 |
70 | 5 | 70 – 80 | 5 | 75 | 375 | 28125 |
80 | 0 | 80 – 90 | 0 | 85 | 0 | 0 |
Total | 120 | – | 5490 | 284600 |
From the table, N = 120, `sumf_"i"x_"i" = 5490 "and" sumf_"i"x_"i"^2 = 284600`
Mean = `bar(x) - (sumf_"i"x_"i")/"N" = 5490/120` = 45.75
Maximum frequency 42 is of the class 50 – 60.
∴ Mode lies in the class 50 – 60.
∴ L = 50, f1 = 42, f0 = 25, f2 = 13, h = 10
∴ Mode = `"L" + ("f"_1 - "f"_0)/(2"f"_1 - "f"_0 - "f"_2) xx "h"`
= `50 + (42 - 25)/(2(42) - 25 - 13) xx 10`
= `50 + 17/(84 - 38) xx 10`
= `50 + 17/46 xx 10`
= 50 + 3.6957
= 53.6957
S.D. = `sqrt((sumf_"i"x_"i"^2)/"N" - (bar(x))^2`
= `sqrt(284600/120 - (45.75)^2`
= `sqrt(2371.6667 - 2093.0625)`
= `sqrt(278.6042)`
= 16.6914
Pearsonian’s coefficient of skewness:
Skp = `("Mean" - "Mode")/"S.D."`
= `(45.75 - 53.6957)/(16.6914)`
= `-(7.9457)/(16.6914)`
∴ Skp = – 0.4760
Alternate Method:
Let u = `(x - 45)/10`
Mark above | No. of students ‘more than’ (c.f.) |
Class | Frequency (fi) |
Mid value xi |
ui | fiui | fiui2 |
0 | 120 | 0 –10 | 5 | 5 | − 4 | − 20 | 80 |
10 | 115 | 10 –20 | 7 | 15 | − 3 | − 21 | 63 |
20 | 108 | 20 – 30 | 10 | 25 | − 2 | − 20 | 40 |
30 | 98 | 30 –40 | 13 | 35 | − 1 | − 13 | 13 |
40 | 85 | 40 – 50 | 25 | 45 | 0 | 0 | 0 |
50 | 60 | 50 –60 | 42 | 55 | 1 | 42 | 42 |
60 | 18 | 60 –70 | 13 | 65 | 2 | 26 | 52 |
70 | 5 | 70 –80 | 5 | 75 | 3 | 15 | 45 |
80 | 0 | 80 –90 | 0 | 85 | 4 | 0 | 0 |
Total | 120 | 9 | 335 |
`bar(u) = (sumf_"i"u_"i")/"N" = 9/120` = 0.075
∴ `bar(x) = 45 + 10(bar(u))`
= 45 + 10(0.075)
= 45 + 0.75
= 45.75
Var(u) = `sigma_u^2 = (sumf_"i"u_"i"^2)/"N" - (bar(u))^2`
= `335/120 - (0.075)^2`
= 2.7917 – 0.0056
= 2.7861
Var(X) = h2 x Var(u) = 100 × 2.7861 = 278.61
S.D. = `sqrt(278.61)`
= 16.6916
Maximum frequency 42 is of the class 50 – 60.
∴ Mode lies in the class 50 – 60.
∴ L = 50, f1 = 42, f0 = 25, f2 = 13, h = 10
∴ Mode = `"L" + ("f"_1 - "f"_0)/(2"f"_1 - "f"_0 - "f"_2) xx "h"`
= `50 + (42 - 25)/(2(42) - 25 - 13) xx 10`
= `50 + 17/(84 - 38) xx 10`
= `50 + 17/46 xx 10`
= 50 + 3.6957
= 53.6957
∴ Skp = `("Mean"-"Mode")/"S.D."`
= `(45.75 - 53.6957)/(16.6916)`
= `(-7.9457)/(16.6916)`
= – 0.4760
APPEARS IN
RELATED QUESTIONS
For a distribution, mean = 100, mode = 127 and SD = 60. Find the Pearson coefficient of skewness Skp.
The mean and variance of the distribution is 60 and 100 respectively. Find the mode and the median of the distribution if Skp = – 0.3.
Find Skp for the following set of observations.
17, 17, 21, 14, 15, 20, 19, 16, 13, 17, 18
For a distribution, mean = 100, mode = 80 and S.D. = 20. Find Pearsonian coefficient of skewness Skp.
For a distribution, mean = 60, median = 75 and variance = 900. Find Pearsonian coefficient of skewness Skp.
For a frequency distribution, the mean is 200, the coefficient of variation is 8% and Karl Pearsonian’s coefficient of skewness is 0.3. Find the mode and median of the distribution.
Find Skp for the following set of observations:
18, 27, 10, 25, 31, 13, 28.