Advertisements
Advertisements
Question
Calculate the amount of an ordinary annuity of ₹ 10,000 payable at the end of each half-year for 5 years at 10% per year compounded half-yearly. [(1.05)10 = 1.6289]
Solution
Given a = ₹ 10,000, i = `10/2%` = 5% = 0.05, n = 5 × 2 = 10
P = `"a"/"i" [(1 + "i")^"n" - 1]`
= `10000/0.05 [(1 + 0.05)^10 - 1]`
= `10000/0.05 [(1.05)^10 - 1]`
= 2,00,000 [1.6289 − 1]
= 2,00,000 (0.6289)
= ₹ 1,25,780
APPEARS IN
RELATED QUESTIONS
If the payment of ₹ 2,000 is made at the end of every quarter for 10 years at the rate of 8% per year, then find the amount of annuity. [(1.02)40 = 2.2080]
Find the amount of an ordinary annuity of 12 monthly payments of ₹ 1,500 that earns interest at 12% per annum compounded monthly. [(1.01)12 = 1.1262]
A bank pays 8% per annum interest compounded quarterly. Find the equal deposits to be made at the end of each quarter for 10 years to have ₹ 30,200? [(1.02)40 = 2.2080]
A person deposits ₹ 2,000 at the end of every month from his salary towards his contributory pension scheme. The same amount is credited by his employer also. If 8% rate of compound interest is paid, then find the maturity amount at end of 20 years of service. [(1.0067)240 = 4.9661]
Find the present value of an annuity of ₹ 900 payable at the end of 6th month for 6 years. The money compounded at 8% per annum. [(1.04)–12 = 0.6252]
Find the amount at the end of 12 years of an annuity of ₹ 5,000 payable at the beginning of each year, if the money is compounded at 10% per annum. [(1.1)12 = 3.1384]
If ‘a’ is the annual payment, ‘n’ is the number of periods and ‘i’ is compound interest for ₹ 1 then future amount of the ordinary annuity is
Find the amount of annuity of ₹ 2000 payable at the end of each year for 4 years of money is worth 10% compounded annually. [(1.1)4 = 1.4641]
An equipment is purchased on an installment basis such that ₹ 5000 on the signing of the contract and four-yearly installments of ₹ 3000 each payable at the end of first, second, third and the fourth year. If the interest is charged at 5% p.a find the cash down price. [(1.05)–4 = 0.8227]
Machine A costs ₹ 15,000 and machine B costs ₹ 20,000. The annual income from A and B are ₹ 4,000 and ₹ 7,000 respectively. Machine A has a life of 4 years and B has a life of 7 years. Find which machine may be purchased. (Assume discount rate 8% p.a) [(1.08)–4 = 0.7350, (1.08)–7 = 0.5835]