Advertisements
Advertisements
Question
Calculate the correlation coefficient from the following data and interpret it.
x | 9 | 7 | 6 | 8 | 9 | 6 | 7 |
y | 19 | 17 | 16 | 18 | 19 | 16 | 17 |
Solution
xi | yi | xi2 | yi2 | xiyi | |
9 | 19 | 81 | 361 | 171 | |
7 | 17 | 49 | 289 | 119 | |
6 | 16 | 36 | 256 | 96 | |
8 | 18 | 64 | 324 | 144 | |
9 | 19 | 81 | 361 | 171 | |
6 | 16 | 36 | 256 | 96 | |
7 | 17 | 49 | 289 | 119 | |
Total | 52 | 122 | 396 | 2136 | 916 |
From the table, we have
n = 7, `sum"x"_"i"` = 52, `sum"y"_"i"` = 122, `sum"x"_"i"^2` = 396, `sum"y"_"i"^2` = 2136, `sum"x"_"i""y"_"i"` = 916
∴ `bar"x" = (sum"x"_"i")/"n" = 52/7`
`bar"y" = (sum"y"_"i")/"n" = 122/7`
∴ `bar"x"bar"y"=(52xx122)/49` = `6344/49`
Cov (X, Y) = `1/"n" sum"x"_"i""y"_"i" - bar"x" bar"y"`
= `916/7-6344/49`
= `(6412-6344)/49`
= `68/49`
`sigma_"x"^2 = (sum"x"_"i"^2)/"n" - (bar"x")^2`
= `396/7 - (52/7)^2`
= `(8772-2704)/49`
= `68/49`
`sigma_"y"^2 = (sum"y"_"i"^2)/"n" - (bar"y")^2`
= `2136/7 - (122/7)^2`
= `(14952 - 14884)/49`
= `68/49`
∴ `sigma_"x" sigma_"y" = sqrt(sigma_"x"^2 sigma_"y"^2)`
= `sqrt(68/49 xx 68/49)`
= `68/49`
r = `("Cov (X, Y)")/(sigma_"x" sigma_"y")`
= `((68/49))/(68/49)` = 1
∴ The value of r indicates perfect positive correlation between x and y.
APPEARS IN
RELATED QUESTIONS
Calculate the correlation coefficient from the following data, and interpret it.
X | 1 | 3 | 5 | 7 | 9 | 11 | 13 |
Y | 12 | 10 | 8 | 6 | 4 | 2 | 0 |