Advertisements
Advertisements
Question
Check the validity of the Rolle’s theorem for the following function:
f(x) = `x^(2/3), x ∈ [ - 1, 1]`
Solution
f(x) = `x^(2/3)`
∴ f'(x) = `d/dx(x^(2/3))`
= `(2)/(3)x^(-1/3)`
= `(2)/(3root(3)(x)`
This does not exist at x = 0 and 0 ∈ (– 1, 1)
∴ f is not differentiable on the interval (– 1, 1).
Hence, the conditions of Rolle's theorem are not satisfied.
APPEARS IN
RELATED QUESTIONS
Check the validity of the Rolle’s theorem for the following functions : f(x) = x2 – 4x + 3, x ∈ [1, 3]
Check the validity of the Rolle’s theorem for the following functions : f(x) = e–x sin x, x ∈ [0, π].
Check the validity of the Rolle’s theorem for the following functions : f(x) = 2x2 – 5x + 3, x ∈ [1, 3].
Check the validity of the Rolle’s theorem for the following functions : f(x) = sin x – cos x + 3, x ∈ [0, 2π].
Check the validity of the Rolle’s theorem for the following function:
f(x) = x2, if 0 ≤ x ≤ 2
= 6 – x, if 2 < x ≤ 6.
Given an interval [a, b] that satisfies hypothesis of Rolle's theorem for the function f(x) = x4 + x2 – 2. It is known that a = – 1. Find the value of b.
Verify Rolle’s theorem for the following functions : f(x) = sin x + cos x + 7, x ∈ [0, 2π]
Verify Rolle’s theorem for the following functions : f(x) = `sin(x/2), x ∈ [0, 2pi]`
Verify Rolle’s theorem for the following functions : f(x) = x2 – 5x + 9, x ∈ 1, 4].
If Rolle's theorem holds for the function f(x) = x3 + px2 + qx + 5, x ∈ [1, 3] with c = `2 + (1)/sqrt(3)`, find the values of p and q.
If Rolle’s theorem holds for the function f(x) = (x –2) log x, x ∈ [1, 2], show that the equation x log x = 2 – x is satisfied by at least one value of x in (1, 2).
Choose the correct option from the given alternatives :
If the function f(x) = ax3 + bx2 + 11x – 6 satisfies conditions of Rolle's theoreem in [1, 3] and `f'(2 + 1/sqrt(3))` = 0, then values of a and b are respectively
Verify Rolle’s theorem for the function f(x) `(2)/(e^x + e^-x)` on [– 1, 1].
A ladder 5 m in length is resting against vertical wall. The bottom of the ladder is pulled along the ground, away from the wall at the rate of 1.5 m /sec. The length of the higher point of the when foot of the ladder is 4 m away from the wall decreases at the rate of ______
lf Rolle's theorem for f(x) = ex (sin x – cos x) is verified on `[π/4, (5π)/4]`, then the value of c is ______.
If Rolle's theorem holds for the function f(x) = x3 + bx2 + ax + 5, x ∈ [1, 3] with c = `2 + 1/sqrt(3)`, find the values of a and b.