Advertisements
Advertisements
Question
Choose the correct option:
If X, Y, Z are non zero real numbers, then the inverse of matrix A = `[(x, 0, 0),(0, y, 0),(0, 0, z)]`
Options
`[(x^-1, 0, 0),(0, y^-1, 0),(0, 0, z^-1)]`
`XYZ[(x - 1, 0, 0),(0, y^-1, 0),(0, 0, z^-1)]`
`1/(XYZ)[(x, 0, 0),(0, y, 0),(0, 0, z)]`
`1/(XYZ)[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
Solution
`[(x^-1, 0, 0),(0, y^-1, 0),(0, 0, z^-1)]`
Explanation:
Given A = `[(x, 0, 0),(0, y, 0),(0, 0, z)]`
∴ |A| = `x(yz - 0) = xyz ≠ 0`
Now, A11 = yz, A12 = 0, A13 = 0
A21 = 0, A22 = xz, A23 = 0
A31 = 0, A32 = 0, A33 = xy
∴ adj A = `[(yz, 0, 0),(0, xz, 0),(0, 0, xy)]`
A–1 = `1/|A| (adj A) = 1/(xyz) [(yz, 0, 0),(0, xz, 0),(0, 0, xy)]`
= `[((yz)/(xyz), 0, 0),(0, (xz)/(xyz), 0),(0, 0, (xy)/(xyz))] = [(1/x, 0, 0),(0, 1/y, 0),(0, 0, 1/z)]`
= `[(x^-1, 0, 0),(0, y^-1, 0),(0, 0, z^-1)]`