Advertisements
Advertisements
Question
Choose the correct option:
Let `|(0, sin theta, 1),(-sintheta, 1, sin theta),(1, -sin theta, 1 - a)|` where 0 ≤ θ ≤ 2n, then
Options
Det (A) = 0
Det (A) ∈ (2, `oo`)
Det (A) ∈ (2, 4)
Det (A) ∈ (2, 4)
MCQ
Solution
Det (A) ∈ (2, 4)
Explanation:
Given A = `|(0, sin theta, 1),(- sin theta, 1, sin theta),(1, - sin theta, 1 - a)|`
∴ |A| `1(1 + sin^2theta) - sin theta (- sin theta + sin theta) + 1(sin^2theta + 1)`
= `1 + sin^2theta + sin^2theta + 1`
= `2 + 2sin^2theta`
= `2(1 + sin^2theta)`
Now, 0 ≤ θ ≤ 2π
⇒ 0 ≤ sin θ ≤ 1
⇒ 0 ≤ sin2θ ≤ 1
⇒ 1 ≤ 1 + sin2θ ≤ 2
⇒ 2 ≤ 2 (1 + sin2θ) ≤ 4
∴ Det (A) [2, 4)]
shaalaa.com
Determinants
Is there an error in this question or solution?