Advertisements
Advertisements
Question
Consider a set containing function A= {cos–1cosx, sin(sin–1x), sinx((sinx)2 – 1), etan{x}, `e^(|cosx| + |sinx|)`, sin(tan(cosx)), sin(tanx)}. B, C, D, are subsets of A, such that B contains periodic functions, C contains even functions, D contains odd functions then the value of n(B ∩ C) + n(B ∩ D) is ______ where {.} denotes the fractional part of functions)
Options
4.00
5.00
6.00
7.00
Solution
Consider a set containing function A= {cos–1cosx, sin(sin–1x), sinx((sinx)2 – 1), etan{x}, `e^(|cosx| + |sinx|)`, sin(tan(cosx)), sin(tanx)}. B, C, D, are subsets of A, such that B contains periodic functions, C contains even functions, D contains odd functions then the value of n(B ∩ C) + n(B ∩ D) is 5.00 where {.} denotes the fractional part of functions)
Explanation:
B = {cos–1cosx, sinx((sinx)2, sinx((sinx)2 – 1), etan(x), `e^(|cosx| + |sinx|)`, sin(tan(cosx)), sin(tanx)}
C = {cos–1(cosx), `e^(|cosx| + |sinx|)`, sin(tan(cosx))}
D = {sin(sin–1x), sinx((sinx)2 – 1)sin(tanx)}
∴ n(B ∩ C) = 3, n(B ∩ D) = 2
∴ n(B ∩ C) + x(B ∩ D) = 5