Advertisements
Advertisements
Question
Considering the formation, breaking and strength of hydrogen bond, predict which of the following mixtures will show a positive deviation from Raoult’s law?
Options
Methanol and acetone
Chloroform and acetone
Nitric acid and water
Phenol and aniline
Solution
Methanol and acetone
Explanation:
Mixture of Methanol and acetone shows positive deviation because methanol-methanol and acetone-acetone interactions are more than methanol-acetone. The more number of hydrogen bonds are broken the less number of new H-bonds are formed.
APPEARS IN
RELATED QUESTIONS
What is meant by positive deviations from Raoult's law? Give an example. What is the sign of ∆mixH for positive deviation?
Define azeotropes.
What type of deviation is shown by a mixture of ethanol and acetone? Give reason.
100 g of liquid A (molar mass 140 g mol−1) was dissolved in 1000 g of liquid B (molar mass 180 g mol−1). The vapour pressure of pure liquid B was found to be 500 torr. Calculate the vapour pressure of pure liquid A and its vapour pressure in the solution if the total vapour pressure of the solution is 475 Torr.
For the reaction :
\[\ce{2NO_{(g)} ⇌ N2_{(g)} + O2_{(g)}}\];
ΔH = -heat
Kc = 2.5 × 102 at 298K
What will happen to the concentration of N2 if :
(1) Temperature is decreased to 273 K.
(2) The pressure is reduced
At equilibrium the rate of dissolution of a solid solute in a volatile liquid solvent is ______.
On the basis of information given below mark the correct option.
(A) In bromoethane and chloroethane mixture intermolecular interactions of A–A and B–B type are nearly same as A–B type interactions.
(B) In ethanol and acetone mixture A–A or B–B type intermolecular interactions are stronger than A–B type interactions.
(C) In chloroform and acetone mixture A–A or B–B type intermolecular interactions are weaker than A–B type interactions.
Using Raoult’s law explain how the total vapour pressure over the solution is related to mole fraction of components in the following solutions.
\[\ce{CHCl3(l) and CH2Cl2(l)}\]
The vapour pressure of pure liquid X and pure liquid Y at 25°C are 120 mm Hg and 160 mm Hg respectively. If equal moles of X and Y are mixed to form an ideal solution, calculate the vapour pressure of the solution.
An azeotropic mixture of two liquids will have a boiling point lower than either of the two liquids when it ______.