Advertisements
Advertisements
Question
`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.
Options
`tan^2(α/2)`
`cot^2(α/2)`
tan α
`cot(α/2)`
MCQ
Fill in the Blanks
Solution
`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = `underlinebb(tan^2(α/2))`.
Explanation:
Given that, `cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x
`tan^-1(1/sqrt(cosα)) - tan^-1(sqrt(cosα))` = x
⇒ `tan^-1 (1/sqrt(cosα) - sqrt(cosα))/(1 + 1/sqrt(cosα) . sqrt(cos α)` = x
⇒ `tan^-1 (1 - cos α)/(2sqrt(cosα))` = x
⇒ tan x = `(1 - cos α)/(2sqrt(cosα))`
⇒ cot x = `(2sqrt(cosα))/(1 - cosα) = B/P`
P = (1 – cosα) and B = `2sqrt(cos α)`
H = `sqrt(P^2 + B^2)` = 1 + cos α
⇒ sin x = `(1 - cos α)/(1 + cos α)`
= `(1 - (1 - 2sin^2 α//2))/(1 + 2 cos^2 α//2 - 1)`
or sin x = `tan^2 α/2`
shaalaa.com
Is there an error in this question or solution?