Advertisements
Advertisements
Question
`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.
Options
`pi/4`
`pi/2`
π
2π
MCQ
Fill in the Blanks
Solution
`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = `pi/4`.
Explanation:
Let I = `int_0^(pi/2) 1/(1 + cos^3x) "d"x`
∴ I = `int_0^(pi/2) (sin^3x)/(sin^2x + cos^2x) ""x` ......(i)
∴ I = `(cos^3x)/(cos^3x + sin^3x) "d"x` ......(ii) `[because int_0^"a" "f"(x)"d"x = int_0^"a" "f"("a" - x)"d"x]`
Adding (i) and (ii), we get
2I = `int_0^(pi/2) (sin^3x + cos^x)/(sin^3x cos^3x) "d"x`
∴ 2I = `int_0^(pi/2) 1* "d"x`
∴ I = `1/2[x]_0^(pi/2)`
= `1/2(pi/2 - 0)`
∴ I = `pi/4`
shaalaa.com
Is there an error in this question or solution?