Advertisements
Advertisements
Question
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
Options
`pi/2`
`pi/3`
π
2π
MCQ
Fill in the Blanks
Solution
`int_0^3 1/sqrt(3x - x^2)"d"x` = π.
Explanation:
`int_0^3 1/sqrt(3x - x^2)"d"x`
= `int_0^3 1/sqrt(9/4 - 9/4 + 3x - x^2) "d"x`
= `int_0^3 1/sqrt(9/4 - (x^2 - 3x + 9/4))"d"x`
= `int_0^3 1/sqrt((3/2)^2 - (x - 3/2)^2) "d"x`
= `[sin^-1 ((x - 3/2)/(3/2))]_0^3`
= `sin^-1 (1) - sin^-1 (-1)`
= `pi/2 - (- pi/2)`
∴ I = π
shaalaa.com
Is there an error in this question or solution?