Advertisements
Advertisements
Question
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
Options
log 2
`1/(1 + log2)`
`log2/(1 + log2)`
`- 1/(1 + log2)`
MCQ
Fill in the Blanks
Solution
`int_1^3 ("d"x)/(x(1 + logx)^2)` = `log2/(1 + log2)`.
Explanation:
Let I = `int_1^3 ("d"x)/(x(1 + logx)^2)`
Put 1 + log x = t ⇒ `1/x "d"x` = dt
∴ I = `int_1^(1 + log2) "dt"/"t"^2 = [- 1/"t"]_1^(1 + log 2)`
= `- 1/(1 + log 2) + 1`
= `(1 + log2 - 1)/(1 + log 2)`
∴ I = `log2/(1 + log2)`
shaalaa.com
Is there an error in this question or solution?