Advertisements
Advertisements
Question
`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.
Options
1
`sqrt(2)`
2
3
MCQ
Fill in the Blanks
Solution
`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = 2.
Explanation:
`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x = int_(-pi/4)^(pi/4) (1/(1 - sinx) xx(1 + sinx)/(1 + sin x))"d"x`
= `int_(-pi/4)^(pi/4) (1 + sinx)/(1 - sin^2x) "d"x`
= `int_(-pi/4)^(pi/4) (1 + sin^2x)/(cos^2) "d"x`
= `int_(-pi/4)^(pi/4) (sec^2x + secx tanx) d"x`
= `[tanx + secx]_(-pi/4)^(pi/4)`
= `[tan pi/4 + sec pi/4] - [tan(- pi/4) + sec(-pi/4)]`
= `(1 + sqrt(2)) - (-1 + sqrt(2))`
= 2
shaalaa.com
Is there an error in this question or solution?