Advertisements
Advertisements
Question
`"d"^2/("d"x^2) (2 sin 3x cosx)` = ______.
Options
`2^2 (sin 2x + 2^2 sin 4x)`
`2^2 (sin 2x - 2^2 sin 4x)`
`2^2 (-sin 2x + 2^2 sin 4x)`
`-2^2 (sin 2x + 2^2 sin 4x)`
MCQ
Fill in the Blanks
Solution
`"d"^2/("d"x^2) (2 sin 3x cosx)` = `-2^2 (sin 2x + 2^2 sin 4x)`.
Explanation:
Let y = 2 sin 3x cos x
⇒ y = sin 4x + sin 2x
∴ `("d"y)/("d"x)` = 4 cos 4x + 2 cos 2x
∴ `("d"^2y)/("d"x^2)` = –16 sin 4x – 4 sin 2x
= – 4(sin 2x + 4 sin 4x)
= –22 (sin 2x + 22 sin 4x)
shaalaa.com
Higher Order Derivatives
Is there an error in this question or solution?