Advertisements
Advertisements
Question
`d/dx(x^{sinx})` = ______
Options
`(sinx/x + cosx logx)`
`x^sinx(sinx/x - cosx logx)`
`x^sinx(sinx/x + cosx)`
`x^sinx(sinx/x + cosx logx)`
MCQ
Fill in the Blanks
Solution
`d/dx(x^{sinx})` = `underline(x^sinx(sinx/x + cosx logx))`
Explanation:
Let y = xsinx
Taking logarithm on both sides, we get
log y = (sin x) log x
Differentiating both sides w.r.t. x, we get
`1/y . dy/dx = sinx/x + cosx logx`
∴ `dy/dx = x^sinx(sinx/x + cosx logx)`
shaalaa.com
Is there an error in this question or solution?