Advertisements
Advertisements
Question
Define Snell's law of refraction. A ray of light is incident on a glass slab at an angle of incidence of 60°. If the angle of refraction be 32.7°, calculate the refractive index of glass. (Given : sin 60° = 0.866, and sin 32.7° = 0.540).
Solution
According to Snell's law, the ratio of sines of the angles of incidence and refraction is constant for a given pair of mediums.
We get:
sin i /sin r = n (constant)
This constant is called refractive index.
According to the question:
Angle of incidence, i = 60°
Angle of refraction, r = 32.7°
Refractive index, n = ?
Applying the above formula, we get:
sin i / sin r = n
or, n = sin 60°/ sin 32.7°
= 0.866/0.540 = 1.60
Thus, the refractive index of glass is 1.60.
APPEARS IN
RELATED QUESTIONS
The speed of light in air is 3 × 108 m/s. In medium X its speed is 2 × 108 m/s and in medium Y the speed of light is 2.5 × 108 m/s Calculate:
(a) air nx
(b) air nY
(c) x nY
The following table gives the refractive indices of a few media:
1 | 2 | 3 | 4 | 5 | |
Medium | Water | Crown glass | Rock salt | Ruby | Diamond |
Refractive index | 1.33 | 1.52 | 1.54 | 1.71 | 2.42 |
Use this table to give an example of:
(i) a medium pair so that light speeds up when it goes from one of these medium to another.
(ii) a medium pair so that light slows down when it goes from one of these medium to another.
State the law of refraction of light that defines the refractive index of a medium with respect to the other. Express it mathematically. How is refractive index of any medium 'A' with respect to a medium 'B' related to the speed of propagation of light in two media A and B? State the name of this constant when one medium is vacuum or air.
The refractive indices of glass and water with respect to vacuum are 3/2 and 4/3 respectively. If the speed of light in glass is 2 × 108m/s, find the speed of light in (i) vacuum, (ii) water.
Name a liquid whose mass density is less than that of water but it is optically denser than water.
Solve the example.
If the absolute refractive indices of glass and water are 3/2 and 4/3 respectively, what is the refractive index of glass with respect to water?
n = _______. This law is also called as Snell’s law.
Noor, a young student, was trying to demonstrate some properties of light in her Science project work. She kept ‘X’ inside the box (as shown in the figure) and with the help of a laser pointer made light rays pass through the holes on one side of the box. She had a small butter-paper screen to see the spots of light being cast as they emerged.
She measured the angles of incidence for both the rays on the left side of the box to be 48.60. She knew the refractive index of the material ‘X’ inside the box was 1.5. What will be the approximate value of angle of refraction?
(use the value: sin 48.6° ≈ 0.75)
Noor, a young student, was trying to demonstrate some properties of light in her Science project work. She kept ‘X’ inside the box (as shown in the figure) and with the help of a laser pointer made light rays pass through the holes on one side of the box. She had a small butter-paper screen to see the spots of light being cast as they emerged.
If the object inside the box was made of a material with a refractive index less than 1.5 then the ______.
The refractive index of glass with respect to air is `5/4` and the refractive index of water with respect to air is `4/3`. Then what will be the refractive index of glass with respect to water?
A light ray enters from medium A to medium B as shown in the figure.
Which one of the two media is denser w.r.t. other medium? Justify your answer.