English

Determine the maximum value of Z = 4x + 3y if the feasible region for an LPP is shown in figure - Mathematics

Advertisements
Advertisements

Question

Determine the maximum value of Z = 4x + 3y if the feasible region for an LPP is shown in figure

Sum

Solution

The feasible region is bounded.

Therefore, maximum of Z must occur at the corner point of the feasible region (Figure)

Corner Point Value of Z  
O,(0, 0) 4 (0) + 3 (0) = 0  
A(25, 0) 4 (25) + 3 (0) = 100  
B(16, 16) 4 (16) + 3 (16) = 112 ← (Maximum)
C(0, 24) 4 (0) + 3 (24) = 72  

Hence, the maximum value of Z is 112.

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Linear Programming - Solved Examples [Page 243]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 12 Linear Programming
Solved Examples | Q 1 | Page 243

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Vitamins A and B are found in two different foods F1 and F2. One unit of food F1contains 2 units of vitamin A and 3 units of vitamin B. One unit of food F2 contains 4 units of vitamin A and 2 units of vitamin B. One unit of food F1 and F2 cost Rs 50 and 25 respectively. The minimum daily requirements for a person of vitamin A and B is 40 and 50 units respectively. Assuming that any thing in excess of daily minimum requirement of vitamin A and B is not harmful, find out the optimum mixture of food F1 and F2 at the minimum cost which meets the daily minimum requirement of vitamin A and B. Formulate this as a LPP.


An automobile manufacturer makes automobiles and trucks in a factory that is divided into two shops. Shop A, which performs the basic assembly operation, must work 5 man-days on each truck but only 2 man-days on each automobile. Shop B, which performs finishing operations, must work 3 man-days for each automobile or truck that it produces. Because of men and machine limitations, shop A has 180 man-days per week available while shop B has 135 man-days per week. If the manufacturer makes a profit of Rs 30000 on each truck and Rs 2000 on each automobile, how many of each should he produce to maximize his profit? Formulate this as a LPP.


A firm manufactures two products, each of which must be processed through two departments, 1 and 2. The hourly requirements per unit for each product in each department, the weekly capacities in each department, selling price per unit, labour cost per unit, and raw material cost per unit are summarized as follows:
 

  Product A Product B Weekly capacity
Department 1 3 2 130
Department 2 4 6 260
Selling price per unit Rs 25 Rs 30  
Labour cost per unit Rs 16 Rs 20  
Raw material cost per unit Rs 4 Rs 4  


The problem is to determine the number of units to produce each product so as to maximize total contribution to profit. Formulate this as a LPP.


The solution set of the inequation 2x + y > 5 is


Which of the following sets are convex?


Let X1 and X2 are optimal solutions of a LPP, then


The optimal value of the objective function is attained at the points


The objective function Z = 4x + 3y can be maximised subjected to the constraints 3x + 4y ≤ 24, 8x + 6y ≤ 48, x ≤ 5, y ≤ 6; xy ≥ 0


Which of the following is not a convex set?


A company manufactures two types of toys A and B. A toy of type A requires 5 minutes for cutting and 10 minutes for assembling. A toy of type B requires 8 minutes for cutting and 8 minutes for assembling. There are 3 hours available for cutting and 4 hours available for assembling the toys in a day. The profit is ₹ 50 each on a toy of type A and ₹ 60 each on a toy of type B. How many toys of each type should the company manufacture in a day to maximize the profit? Use linear programming to find the solution. 


Feasible region is the set of points which satisfy ______.


Tyco Cycles Ltd manufactures bicycles (x) and tricycles (y). The profit earned from the sales of each bicycle and a tricycle are ₹ 400 and ₹ 200 respectively, then the total profit earned by the manufacturer will be given as ______


Ganesh owns a godown used to store electronic gadgets like refrigerator (x) and microwave (y). If the godown can accommodate at most 75 gadgets, then this can be expressed as a constraint by ______


Ms. Mohana want to invest at least ₹ 55000 in Mutual funds and fixed deposits. Mathematically this information can be written as ______


Determine the minimum value of Z = 3x + 2y (if any), if the feasible region for an LPP is shown in Figue.


A manufacturing company makes two types of television sets; one is black and white and the other is colour. The company has resources to make at most 300 sets a week. It takes Rs 1800 to make a black and white set and Rs 2700 to make a coloured set. The company can spend not more than Rs 648000 a week to make television sets. If it makes a profit of Rs 510 per black and white set and Rs 675 per coloured set, how many sets of each type should be produced so that the company has maximum profit? Formulate this problem as a LPP given that the objective is to maximise the profit.


Minimise Z = 3x + 5y subject to the constraints:
x + 2y ≥ 10
x + y ≥ 6
3x + y ≥ 8
x, y ≥ 0


The corner points of the feasible region determined by the system of linear constraints are (0, 10), (5, 5), (15, 15), (0, 20). Let Z = px + qy, where p, q > 0. Condition on p and q so that the maximum of Z occurs at both the points (15, 15) and (0, 20) is ______.


Feasible region (shaded) for a LPP is shown in the Figure Minimum of Z = 4x + 3y occurs at the point ______.


The common region determined by all the linear constraints of a LPP is called the ______ region.


In maximization problem, optimal solution occurring at corner point yields the ____________.


Conditions under which the object function is to be maximum or minimum are called ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×