Advertisements
Advertisements
Question
Determine the solubilities of silver chromate, barium chromate, ferric hydroxide, lead chloride and mercurous iodide at 298K from their solubility product constants. Determine also the molarities of individual ions.
Solution
(1) Silver chromate:
\[\ce{Ag_2CrO_4 -> 2Ag^+ + CrO_4^{2-}}\]
then
`"K"_("sp") = ["Ag"^+]^2["CrO"_4^(2-)]`
Let the solubility of \[\ce{Ag_2CrO_4}\] be s.
`=> ["Ag"^+] 2"s" and ["CrO"_4^(2-)] = "s"`
Then
`"K"_("sp") = ("2s")^2 "s" = "4s"^3`
`=> 1.1 xx 10^(-12) = "4s"^3`
`therefore 275 xx 10^(-12) = "s"^3`
`"s" = 0.65 xx 10^(-4) "M"`
Molarity of `"Ag"^+`= 2s = 2 × 0.65 × 10–4 = 1.30 × 10–4 M
Molarity of `"CrO"_4^(2-)`= s = 0.65 × 10–4 M
(2) Barium chromate:
`"BaCr"_4 -> "Ba"^(2+) + "CrO"_4^(2-)`
Then `"K"_("sp") = ["Ba'^(2+)]["CrO"_4^(2-)]`
Let s be the solubility of `"BaCrO"_(4+)`
Thus `["Ba"^(2+)] = "s" and ["CrO"_4^(2-)] = "s"`
`=> "K"_("SP") = "s"^2`
`=> 1.2 xx 10^(-10) = "s"^2`
`=> "s" = 1.09 xx 10^(-5) "M"`
Molarity of `"Ba"^(2+)`= Molarity of `"CrO"_4^(2-) = "s" = 1.09 xx 10^(-5) "M"`
(3) Ferric hydroxide:
`"Fe"("OH")_3 -> "Fe"^(2+) + 3"OH"^(-)`
`"K"_("sp") = ["Fe"^(2+)] ["OH"^(-)]^3`
Let s be the solubility of `"Fe"("OH")_3`
Thus `["Fe"^(3+)]` = s and `["OH"^-] = "3s"`
`=> "K"_("sp") = "s".(3"s")^3`
`= "s".27 "s"^3`
`"K"_("sp") = 27"s"^4`
`1.0 xx 10^(-38 ) = 27 "s"^4`
`.037 xx 10^(-38) = "s"^4`
`.00037 xx 10^(-36) = "s"^4` ` => 1.39 xx 10^(-10) "M" = "S"`
Molarity of `"Fe"^(3+) = "s" = 1.39 xx 10^(-10) "M"`
Molarity of `"OH"^(-) = "3s" = 4.17 xx 10^(-10) "M"`
(4) Lead chloride:
\[\ce{PbCl_2 -> Pb^{2+} + 2Cl-}\]
`"K"_("SP") = ["Pb"^(2+)]["Cl"^-]^2`
Let KSP be the solubility of `"PbCl"_2`
`["PB"^(2+)] = "s" and ["Cl"^(-)] = "2s"`
Thus `"K"_("sp") = "s".("2s")^2`
`= "4s"^3`
`=> 1.6 xx 10^(-5) = "4s"^3`
`=> 0.4 xx 10^(-5) = "s"^3`
`4 xx 10^(-6) = "s"^3 => 1.58 xx 10^(-2) "M" = "S".1`
Molarity of `"PB"^(2+) = "s" = 1.58 xx 10^(-2) "M"`
Molarity of chloride = 2s = `3.16 xx 10^(-2) "M"`
(5) Mercurous iodide:
`"Hg"_2I_2 -> "Hg"^(2+) + "2I"^(-)`
`"K"_("sp") = ["Hg"_2^(2+)]^(2)[I^(-)]^2`
Let s be the solubility of `"Hg"_2I_2`
`=> ["Hg"_2^(2+)]` = "s" and `["I"^(-)] = "2s"`
Thus `"K"_("sp") = "s"("2s")^2`
`=> "K"_("sp") = 4"s"^3`
`4.5 xx 10^(-29) = 4"s"^3`
`1.125 xx 10^(-29) = "s"^3`
`=> "s" = 2.24 xx 10^(-10) "M"`
Molarity of `"Hg"_2^(2+) = "s" = 2.24 xx 10^(-10) "M"`
Molarity of `"I"^(-) = "2s" = 4.48 xx 10^(-10) "M"`
APPEARS IN
RELATED QUESTIONS
What is the maximum concentration of equimolar solutions of ferrous sulphate and sodium sulphide so that when mixed in equal volumes, there is no precipitation of iron sulphide? (For iron sulphide, Ksp = 6.3 × 10–18).
The aqueous solution of sodium acetate is basic. Explain.
Explain the following:
(i) When NaCl is added to the AgNO3 solution, a white precipitate is formed.
(ii) An aqueous solution of ammonium chloride is acidic in nature.
How does K2[PtCl4] get ionised when dissolved in water? Will it form a precipitate when AgNO3 solution is added to it? Give a reason for your answer.