English

Diagonals AC and BD of a trapezium ABCD intersect at O, where AB || DC. If DOOB=12, then show that AB = 2CD - Mathematics

Advertisements
Advertisements

Question

Diagonals AC and BD of a trapezium ABCD intersect at O, where AB || DC. If `(DO)/(OB) = 1/2,` then show that AB = 2CD

Theorem

Solution

Given: 

  1. In trapezium ABCD
    Diagonals AC and BD intersect at O
  2. AB || DC
  3. `(DO)/(OB) = 1/2`

To prove: 

AB = 2CD

Proof:

In ΔOAB and ΔOCD

∠AOB = ∠COD       ...(vertically opposite angle)

∠OAB = ∠OCD        ....(Alternate interior angle as given, AB || DC)

ΔOAB ∼ ΔOCD      ...(by AA similarity Rule)

Now, `(OC)/(OA) = (CD)/(AB) = (DO)/(BO)`

⇒ `(CD)/(AB) = (DO)/(BO)`

`(CD)/(AB) = 1/2`      ....(given)

Hence, AB = 2CD   Proved

shaalaa.com
  Is there an error in this question or solution?
2023-2024 (February) Standard - Delhi Set 2
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×