Advertisements
Advertisements
Question
Differentiate the following with respect to x.
sin(x2)
Solution
For the following problems chain rule to be used:
`"d"/"dx"` f(g(x)) = f'(g(x)) . g'(x)
`"d"/"dx"` [f(x)]n = n[f(x)]n-1 × `"d"/"dx"`f(x)
Let y = sin(x2)
`"dy"/"dx"` f(g(x)) = f'(g(x)) . g'(x)
Here f = sin x, g = x2
`"dy"/"dx" = cos(x^2) "d"/"dx" (x^2)`
= cos(x2) (2x)
= 2x cos(x2)
APPEARS IN
RELATED QUESTIONS
Differentiate the following with respect to x.
(x2 – 3x + 2) (x + 1)
Differentiate the following with respect to x.
x sin x
Differentiate the following with respect to x.
sin2 x
Differentiate the following with respect to x.
cos3 x
If `xsqrt(1 + y) + ysqrt(1 + x)` = 0 and x ≠ y, then prove that `"dy"/"dx" = - 1/(x + 1)^2`
If 4x + 3y = log(4x – 3y), then find `"dy"/"dx"`
Differentiate the following with respect to x.
xsin x
Find `"dy"/"dx"` of the following function:
x = ct, y = `c/t`
If y = 2 + log x, then show that xy2 + y1 = 0.
If = a cos mx + b sin mx, then show that y2 + m2y = 0.