Advertisements
Advertisements
Question
Differentiate the following w.r.t.x. :
y = `(5"e"^x - 4)/(3"e"^x - 2)`
Solution
y = `(5"e"^x - 4)/(3"e"^x - 2)`
Differentiating w.r.t. x, we get
`("d"y)/("d"x) = "d"/("d"x) ((5"e"^x - 4)/(3"e"^x - 2))`
`("d"y)/("d"x) = ((3"e"^x - 2) "d"/("d"x) (5"e"^x - 4) - (5"e"^x - 4) "d"/("d"x) (3"e"^x - 2))/(3"e"^x - 2)^2`
= `((3"e"^x - 2)(5 "d"/("d"x) "e"^x - "d"/("d"x) 4) - (5"e"^x - 4)(3 "d"/("d"x) "e"^x - "d"/("d"x) 2))/(3"e"^x - 2)^2`
= `((3"e"^x - 2)(5"e"^x - 0) - (5"e"^x - 4)(3"e"^x - 0))/(3"e"^x - 2)^2`
= `(15("e"^x)^2 - 10"e"^x - 15("e"^x)^2 + 12"e"^x)/(3"e"^x - 2)^2`
= `(2"e"^x)/(3"e"^x - 2)^2`
APPEARS IN
RELATED QUESTIONS
Differentiate the following w.r.t.x. :
y = `(x"e"^x)/(x + "e"^x)`
If a function f(x) defined by
f(x) = `{{:("ae"^x + "be"^-x",", -1 ≤ x < 1),("c"x^2",", 1 ≤ x ≤ 3),("a"x^2 + 2"c"x",", 3 < x ≤ 4):}`
be continuous for some a, b, c ε R and f'(0) + f'(2) = e, then the value of a is ______.