Advertisements
Advertisements
Question
Does the escape speed of a body from the earth depend on
(a) the mass of the body,
(b) the location from where it is projected,
(c) the direction of projection,
(d) the height of the location from where the body is launched?
Solution 1
(a) No
(b) No
(c) No
(d) Yes
Escape velocity of a body from the Earth is given by the relation:
`v_"esc" = sqrt(2gR)` ...i
g = Acceleration due to gravity
R = Radius of the Earth
It is clear from equation (i) that escape velocity vesc is independent of the mass of the body and the direction of its projection. However, it depends on gravitational potential at the point from where the body is launched. Since this potential marginally depends on the height of the point, escape velocity also marginally depends on these factors.
Solution 2
The escape speed `v_es` = `sqrt((2GM)/R)` = `sqrt2gR`. Hence
(a) The escape speed of a body from the Earth does not depend on the mass of the body.
(b) The escape speed does not depend on the location from where a body is projected.
(c) The escape speed does not depend on the direction of projection of a body.
(d) The escape speed of a body depends upon the height of the location from where the body is projected, because the escape velocity depends upon the gravitational potential at the point from which it is projected and this potential depends upon height also
APPEARS IN
RELATED QUESTIONS
The escape speed of a projectile on the earth’s surface is 11.2 km s–1. A body is projected out with thrice this speed. What is the speed of the body far away from the earth? Ignore the presence of the sun and other planets
Two stars each of one solar mass (= 2× 1030 kg) are approaching each other for a head on collision. When they are a distance 109 km, their speeds are negligible. What is the speed with which they collide? The radius of each star is 104 km. Assume the stars to remain undistorted until they collide. (Use the known value of G).