Advertisements
Advertisements
Question
`int_0^1 log(1/x - 1) "dx"` = ______.
Options
0
1
`1/2`
`1/3`
MCQ
Fill in the Blanks
Solution
`int_0^1 log(1/x - 1) "dx"` = 0.
Explanation:
Let I = `int_0^1 log (x/(1 - x))`dx ...(i)
∴ I = `int_0^1 log ((1 - x)/x)`dx
`= int_0^1 [(1 - (1 - x))/(1 - x)] "dx" ...[because int_0^"a" "f"(x) "dx" = int_0^"a" "f"("a - x")"dx"]`
∴ `int_0^1 log (x/(1 - x))`dx ...(ii)
Adding (i) and (ii), we get
2I = `int_0^1 log((1 - x)/x) "dx" + int_0^1 log (x/(1 - x))`dx
`= int_0^1 [log ((1 - x)/x) + log (x/(1 - x))]`dx
`= int_0^1 log ((1 - x)/x xx x/(1 - x))`dx
`= int_0^1 log 1 "dx"`
∴ 2I = `int_0^1` 0 dx
∴ I = 0
shaalaa.com
Is there an error in this question or solution?