Advertisements
Advertisements
Question
`int (dx)/(x(x^2 + 1))` equals
Options
`log |x| - 1/2 log |x^2 + 1| + c`
`log |x| + 1/2 log |x^2 + 1| + c`
`- log |x| + 1/2 log |x^2 + 1| + c`
`log |x| + 1/2 log |x^2 + 1| + c`
MCQ
Solution
`log |x| - 1/2 log |x^2 + 1| + c`
Explanation:
I = `int (dx)/(x(x^2 + 1)) = int x/(x^2(x^2 + 1)) dx`
Put `x^2 = t, 2x dx = dt`
I = `1/2 int (2x dx)/(x^2(x + 1)) = 11/2 int (dt)/(t(t + 1)`
Now, `1/(t(t + 1)) = A/t + B/(t + 1)`
1 = A(t + 1) + Bt
Put t = 0, 1 = A
t = – 1, 1 = B(– 1) ∴ B = – 1
∴ `1/(t(t + 1)) = 1/t - 1/(t + 1)`
∴ `1/2 int 1/(t(t + 1)) dt = 1/2 int 1/t dt - 1/2 int 1/(t + 1) dt`
= `1/2 log |t| - 1/2 log |t + 1| + c`
= `1/2 log |x^2| - 1/2 log |t + 1| + c`
= `log |x| - 1/2 log|x^2 + 1| + c`
shaalaa.com
Is there an error in this question or solution?