Advertisements
Advertisements
Question
`(dy)/(dx)` of `xy + y^2 = tan x + y` is
Options
`(sec^2 x - y)/(x + 2y - 1)`
`(sec^2x)/(x + 2y)`
`y/(sec^2x)`
`(x + 2y)/(sec^2x)`
MCQ
Solution
`(sec^2 x - y)/(x + 2y - 1)`
Explanation:
`xy + y^2 = tan x + y`
Differentiating w.r.t x
`(1 * y + x (dy)/(dx)) + (2y (dy)/(dx)) = sec^2x + (dy)/(dx)`
or `(x + y - 1) (dy)/(dx) = sec^2x - y`
⇒ `(dy)/(dx) = (sec^2x - y)/(x + 2y - 1)`
shaalaa.com
Is there an error in this question or solution?