Advertisements
Advertisements
Question
Evaluate: `int_0^π 1/(5 + 4 cos x)dx`
Options
`π/3`
`π/2`
`π/4`
`π/6`
MCQ
Solution
`bb(π/3)`
Explanation:
We have, I = `int_0^π 1/(5 + 4cosx)dx`
= `int_0^π 1/(5 + 4((1 - tan^2 x/2)/(1 + tan^2 x/2))) dx`
= `int_0^π (1 + tan^2 x/2)/(5(1 + tan^2 x/2) + 4(1 - tan^2 x/2))dx`
= `int_0^π (1 + tan^2 x/2)/(9 + tan^2 x/2)dx`
= `int_0^π (sec^2 x/2)/(9 + tan^2 x/2)dx`
Let `tan x/2` = t
`\implies 1/2 sec^2 x/2dx` = dt
Also, x = 0
`\implies` t = 0 and x = π
`\implies` t = ∞
∴ I = `int_0^∞ (dt)/(9 + t^2)`
∴ I = `2int_0^∞ (dt)/(3^2 + t^2)`
∴ I = `2/3[tan^-1 t/3]_0^∞`
= `2/3[tan^-1∞ - tan^-1 0]`
= `2/3(π/2 - 0)`
= `π/3`
shaalaa.com
Is there an error in this question or solution?