Advertisements
Advertisements
Question
Evaluate: `int_0^(pi/2) cosx/(( cos x/2 + sin x/2)^3) dx`
Options
`2 - sqrt(2)`
`2 + sqrt(2)`
`3 + sqrt(3)`
`3 - sqrt(3)`
MCQ
Solution
`2 - sqrt(2)`
Explanation:
We have, I = `int_0^(pi/2) cosx/((cos x/2 + sin x/2)^3) dx`
= `int_0^(pi/2) (cos^2 x/2 - sin^2 x/2)/((cos x/2 + sin x/2)^3) dx`
= `int_0^(pi/2) (cos x/2 - sin x/2)/((cos x/2 + sin x/2)^2) dx`
Let `cos x/2 + sin x/2` = t.
Then, `1/2(- sin x/2 + cos x/2) dx` = dt
⇒ `(cos x/2 - sin x/2) dx` = 2dt
Also, x = 0
⇒ t = 1 and x = `pi/2`
⇒ t = `sqrt(2)`
∴ I = `int_1^sqrt(2) (2dt)/t^2`
= `2int_1^sqrt(2) 1/t^2 dt`
= `2[- 1/t]_1^sqrt(2)`
= `2[- 1/sqrt(2) + 1]`
= `(2 - sqrt(2))`
shaalaa.com
Is there an error in this question or solution?