Advertisements
Advertisements
Question
Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.
Sum
Solution
Let I = `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`
Put x = sin θ ∴ dx = cos θ dθ
When x = 0, sin θ = 0 ∴ θ = 0
When x = 1, sin θ = 1 ∴ θ = `π/2`
∴ I = `int_0^(π/2) tan^-1 (sinθ/sqrt(1 - sin^2θ)).cosθ dθ`
= `int_0^(π/2) tan^-1 (sinθ/cosθ).cosθ dθ`
= `int_0^(π/2) tan^-1 (tan θ). cosθ dθ`
= `int_0^(π/2) θ.cosθ dθ`
= `[θ int cos θ dθ]_0^(π/2) - int_0^(π/2) [d/(dθ)(θ) int cosθ dθ]dθ`
= `[θ sin θ]_0^(π/2) - int_0^(π/2) 1.sinθ dθ`
= `[π/2 sin π/2 - 0] - int_0^(pi/2) sinθ dθ`
= `π/2 - [-cosθ]_0^(π/2)` ...`[∵ sin π/2 = 1]`
= `π/2 - [-cos π/2 + cos 0]`
= `π/2 - [-0 + 1]`
= `π/2 - 1`.
shaalaa.com
Methods of Evaluation and Properties of Definite Integral
Is there an error in this question or solution?