Advertisements
Advertisements
Question
Evaluate: `int (1 - cos x)/(cos x(1 + cos x)) dx`
Options
`log|sec x + tan x| - 2 tan(x/2) + C`
`log|sec x - tan x| - 2 tan(x/2) + C`
`log|sec x + tan x| + 2 tan(x/2) + C`
None of these
Solution
`log|sec x + tan x| - 2 tan(x/2) + C`
Explanation:
Let I = `int (1 - cos x)/(cos x(1 + cos x)) dx`
Let cos x = y
⇒ `(1 - cos x)/(cos x(1 + cos x)) = (1 - y)/(y(1 + y))`
Now `(1 - y)/(y(1 + y)) = A/y + B/(1 + y)` ......(i)
⇒ 1 – y = A(1 + y) + By
Put y = 0 in (i), we get A = 1.
Put y = – 1 in (i), we get B = – 2 ......(ii)
Substituting the values of A and B in (i), we obtain
`(1 - y)/(y(1 + y)) = 1/y - 2/(1 + y)`
⇒ `(1 - cos x)/(cos x(1 + cos x)) = 1/cos x - 2/(1 + cos x)` .....[∵ y = cos x]
∴ I = `int (1 - cos x)/(cos x(1 + cos x)) dx = int 1/cosx dx - int 2/(1 + cos x) dx`
⇒ I = `int sec x dx - int 1/(cos^2 (x/2)) dx`
= `int sec x dx - int sec^2 (x/2) dx`
⇒ I = `log|sec x + tan x| - 2tan (x/2) + C`