Advertisements
Advertisements
Question
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
Sum
Solution
Let I =`int(1+logx)/(x(3+logx)(2+3logx)) dx`
=`int(1+logx)/((3+logx)(2+3logx)). 1/x dx`
Put log x = t
∴ `1/x dx = dt`
∴`int(1+t)/((3+t)(2+3t)) dt`
Let `(1+t)/((3+t)(2+3t)) = A/(3+t) + B/(2+3t)`
∴ `1 + t = A(2+3t)+ B(3+t)` ...(1)
Put `3+ t = 0`, i.e. `t = -3` in (1), we get
`1-3 = A(-7) + B(0)`
∴ `-2=-7A`
∴ `A= 2/7`
Put `2+ 3t = 0`, i.e. `t = -2/3` in (1), we get
`1-2/3 = A(0)+ B(7/3)`
∴ `1/3 = 7/3 B`
∴ `B=1/7`
∴ `(1+t)/((3+t)(2+3t)) = (2/7)/(3+t)+(1/7)/(2+3t)`
∴ I = `int[(2/7)/(3+t)+(1/7)/(2+3t)]dt`
=`2/7int1/(3+t) dt + 1/7 int1/(2+3t)dt`
`=2/7log|3+t|+1/7. (log|2+3t|)/3 + c`
`2/7 log |3+logx|+1/21 log|2+3logx|+c`
shaalaa.com
Is there an error in this question or solution?