Advertisements
Advertisements
Question
Evaluate Δ`[1/((x + 1)(x + 2))]` by taking ‘1’ as the interval of differencing
Solution
Let `1/((x + 1)(x + 2)) = "A"/((x + 1)) + "B"/((x + 2))`
By Partial fraction method
A = `1/((x + 2)) [x = -1]`
= `1/(1 ++ 2)` = 1
A = 1
B = `1/((x + 1)) [x = -2]`
= `1/(-2 + 1)`
= – 1
B = – 1
`1/((x + 1) + (x + 2)) = 1/((x 1)) - 1/((x + 2))`
`[1/((x + 1) + (x + 2))] = Delta [1/((x + 1)) - 1/((x + 2))]`
= `[1/((x + 1 + 1)) - 1/((x + 1))] - [1/((x + 2 + 1)) - 1/((x + 2))]`
= `1/((x + 2)) - 1/((x + 1)) - 1/((x + 3)) + 1/((x + 2))`
= `2/((x + 2)) - 1/((x + 1)) - 1/((x + 3))`
= `(2(x + 1)(x + 3) - (x + 2)(x + 3) - (x + 2)(x + 1))/((x + 1)(x + 2)(x + 3))`
= `(2(x^2 + 4x + 3) - (x^2 + 5x + 6) - (x^2 + 3x + 2))/((x + 1)(x + 2)(x + 3))`
= `(2x^2 + 8x + 6 - x^2 - 5x - 6 - x^2 - 3x - 2)/((x + 1)(x + 2)(x + 3))`
= `(-2)/((x + 1)(x + 2)(x + 3))`
`Delta[1/((x + 1)(x + 2))] = (-2)/((x + 1)(x + 2)(x + 3))`
APPEARS IN
RELATED QUESTIONS
If h = 1 then prove that (E–1Δ)x3 = 3x2 – 3x + 1
If f(x) = x2 + 3x than show that Δf(x) = 2x + 4
Find the missing entry in the following table
x | 0 | 1 | 2 | 3 | 4 |
yx | 1 | 3 | 9 | - | 81 |
Following are the population of a district
Year (x) | 1881 | 1891 | 1901 | 1911 | 1921 | 1931 |
Population (y) Thousands |
363 | 391 | 421 | - | 467 | 501 |
Find the population of the year 1911
Choose the correct alternative:
Δf(x) =
Choose the correct alternative:
If h = 1, then Δ(x2) =
Choose the correct alternative:
If m and n are positive integers then Δm Δn f(x)=
Choose the correct alternative:
∇ ≡
Choose the correct alternative:
∇f(a) =
Prove that Δ∇ = Δ – ∇