Advertisements
Advertisements
Question
Evaluate: \[125\sqrt[3]{\alpha^6} - \sqrt[3]{125 \alpha^6}\]
Solution
Property:
For any two integers a and b
\[\sqrt[3]{ab} = \sqrt[3]{a} \times \sqrt[3]{b}\]
From the above property, we have:
\[125\sqrt[3]{a^6} - \sqrt[3]{125 a^6}\]
\[ = 125\sqrt[3]{a^6} - \left( \sqrt[3]{125} \times \sqrt[6]{a^6} \right)\]
\[= 125 \times a^2 - \left( 5 \times a^2 \right)\]
∴ ( \[\sqrt[3]{a^6} = \sqrt[3]{\left\{ a \times a \times a \right\} \times \left\{ a \times a \times a \right\}} = a \times a = a^2 and \sqrt[3]{125} = \sqrt[3]{5 \times 5 \times 5} = 5\])
\[= 125 a^2 - 5 a^2 \]
\[ = 120 a^2\]
APPEARS IN
RELATED QUESTIONS
Find the cubes of the following number by column method 56 .
Find the cube of \[- \frac{13}{8}\] .
Find the cube of 1.5 .
Find the cube root of the following rational number 0.003375 .
Evaluate of the following
\[\sqrt[3]{1000} + \sqrt[3]{0 . 008} - \sqrt[3]{0 . 125}\]
Find the cube of: -7
Find the cube of: -50
The one’s digit of the cube of 23 is ______.
There are ______ perfect cubes between 1 and 1000.
Evaluate:
`{(5^2 + (12^2)^(1/2))}^3`