Advertisements
Advertisements
Question
Evaluate `int_1^2(x+3)/(x(x+2)) dx`
Sum
Solution
Let I =`int_1^2(x+3)/(x(x+2)) dx`
Let`(x+3)/(x(x+2)) = A/x+B/(x+2)`
∴ x + 3 = A(x + 2) + Bx ...(1)
Put x = 0 in (1), we get
3 = A(2) + B(0)
∴ A = `3/2`
Put x + 2 = 0, i.e. x = -2 in (1), we get
-2 + 3 = A(0) + B(-2)
∴ 1 = -2B
∴ B = `-1/2`
∴ `(x+3)/(x(x+2))=((3/2))/x+((-1/2))/(x+2)`
∴ I = `int_1^2[((3/2))/x + ((-1/2))/(x+2)]dx`
`=3/2int_1^2 1/xdx-1/2int_1^2 1/(x+2)dx`
`=3/2[log|x|]_1^2-1/2[log|x+2|]_1^2`
`=3/2(log2-log1)-1/2(log4-log3)`
`=3/2log2-1/2log4+1/2log3 ...[because log1=0]`
`=1/2(3log2-log4+3)`
`=1/2(log8-log4+log3)`
`=1/2log((8xx3)/4)`
`=1/2log6`
shaalaa.com
Is there an error in this question or solution?