Advertisements
Advertisements
Question
Evaluate: - 4y (15 + 12y - 8z) (x - 2y)
Solution
- 4y (15 + 12y - 8z) (x - 2y)
= - 4y (x - 2y)(15x + 12y - 8z)
= (- 4xy + 8y2)(15x + 12y - 8z)
= - 4xy (15x + 12y - 8z) + 8y2 (15x +12y - 8z)
= -60x2y - 48xy2 + 32xy + 120xy2 + 96y3 - 64y2z
= -60x2y - 48xy2 + 120xy2 - 64y2z + 96y3 + 32xy
= -60x2y + 72xy2 - 64y2z + 96y3 + 32xyz
APPEARS IN
RELATED QUESTIONS
Factorize `7(x - 2y)^2 - 25(x - 2y) + 12`
Factorize the following expressions
1- 27a3
Factorize the following expressions:
a12 + b12
Factorize a3 – 3a2b + 3ab2 – b3 + 8
If \[x^2 + \frac{1}{x^2} = 18,\] find the values of \[x + \frac{1}{x} \text { and } x - \frac{1}{x} .\]
If 3x + 5y = 11 and xy = 2, find the value of 9x2 + 25y2
The area of a rectangular field is 25x2 + 20xy + 3y2 square unit. If its length is 5x + 3y unit, find its breadth, Hence find its perimeter.
Divide: 5x2 - 3x by x
Complete the table.
× | 2x2 | −2xy | x4y3 | 2xyz | (___)xz2 |
x4 | |||||
(___) | 4x5y4 | ||||
−x2y | |||||
2y2z | −10xy2z3 | ||||
−3xyz | |||||
(___) | −14xyz2 |
If x = 2 and y = 3, then find the value of the following expressions
x + y