Advertisements
Advertisements
Question
Evaluate:
`int sqrt((a - x)/x) dx`
Sum
Solution
Let I = `int sqrt((a - x)/x) dx`
Put x = a sin2θ
∴ dx = a × 2 sin θ cos θ dθ and sin2θ = `x/a`
∴ I = `int sqrt((a - a sin^2θ)/(a sin^2θ))*2a sinθ cosθ dθ`
= `int sqrt((a(1 - sin^2θ))/(asin^2θ))*2a sinθ cosθ dθ`
= `int cosθ/sinθ*2a sinθ cosθ dθ`
= `int 2a cos^2θ dθ`
= `aint 2cos^2θ dθ`
= `aint(1 + cos2θ)dθ`
= `aint1 dθ + aintcos2θ dθ`
= `aθ + a*(sin2θ)/2 + c`
= `aθ + a*(2sinθ cosθ)/2 + c`
= a θ + a sin θ cos θ + c ...(1)
Now, sin2θ = `x/a`
∴ sin θ = `sqrt(x/a)`
∴ θ = `sin^-1 sqrt(x/a)`
and cos θ = `sqrt(1 - sin^2θ)`
= `sqrt(1 - x/a)`
= `sqrt((a - x)/a)`
∴ From (1), I = `asin^-1 sqrt(x/a) + a*sqrt(x/a)*sqrt((a - x)/a) + c`
= `asin^-1sqrt(x/a) + sqrt(x(a - x)) + c`.
shaalaa.com
Is there an error in this question or solution?